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1. Introduction

The ahililt of a sensor\ s stem to passi 'l\ sense the t1icc-dilensional structure of its

surounding enironment is frequen(f.% a neccssar piccUrsor to clic icnt interacti nus mith that

enironmen. both for biological and artificial s 'stcnms. A common method for pcifh nning this

sensing is through stereo \ision. .iid in fact, the human stereo s stein is reniarkahl adept at di is

compt.ition, inder a \Aide \ari.et\ of condition,,. Sterc \isio n can he chlracteri,,cd h% diee steps:

(I) [he point in one image corresponding to the projection of a point on a surfice is located. (2)

1 he point in the other image corresponding to the projection of dic .sanc sourface point is located.

(3) The diflerence in projection of die corresponding points is used. together A itli estin.ites of the

parameters of the imaging geornetr' (" hich ma' he determined solel) frmo the correspondences).

to determine a measure of die distance to die surface point. While all three steps are important

to die process. die second stage has usually been considered the critical one. 'lo deal 'ith this

correspondcncc problem. and its concomitant problem of a\oiding false largeis in determining

the correct correspondence or match. concern has centered on appropriate representations for

matching. and on constraints on the matching process that will ensure the correct correspondence

is chosen.

While psychophysical evidence concerning the nature of the human stereo system has

been accumulating for some time. recently attention also has been focused on computational

investigations of die system. One goal of these insestigations has been to consider models of the

information processing aspects of the system, independent to a large extent of the specifics of the

mechanism that performs the computation. While such models are of importance in understanding

the processing of the human system, this relatie independence of the algorithm used by the

human system and its specific implementation in neural units also suggests that such algorithms

may have implications for non-biological applications.

In 1977, Marr and Poggio proposed a feature-point based model of aspects of human

stereopsis [Marr and Poggio, 1979). A computer implementation of their algorithm was then

developed and tested [Grimson, 1981a, b]. Initially, the implementation was evaluated on standard

psychological test images, in particular, random dot stereograms [Julesz. 1960. 1971]. The intent of

this investigation was to demonstrate the adequacy of the Marr-Poggio model for such patterns.

and to demonstrate the consistency of the model with known aspects of human stereo perception.

including situations in which the system fails. The implementation was also tested on a number of

natural images, under a variety of illumination conditions and with a variety of different surface

materials. Since the original presentation of the Marr-Poggio model, a number of additional

psychophysical predictions of the model have been tested, and consequently, several modifications

and improvements have been proposed [e.g. Mayhew and Frisby, 1981; Frisby and Mayhew, 1980;

Mowforth, Mayhew and Frisby. 1981; Schumer and Julesz, 1982).

While examining the psychophysical aspects of the model is clearly of importance for

perceptual modelling. computational experiments with the algorithm can also provide insights

into the information processing aspects of the model. Such experiments are also of importance
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%hen consid ring aplplicitiolt.is of the alh-tnilhii lo doltii s olici th .1i I ihi.el l of 1th ti1tii),111

systenl. , , are t oi-biholoicall. hbised studies of ',1itie point steco .isoit ', im ... Aiold and

Ilinford, 1980: Baker. 1982: Baker and IBinfi'd. 1981: Barnad and I honipson. 1980. kloricc.

1977, 1980: Ohita and Kinade. 1983 (see also the tct.hnlqlc 1 of Kass 1 983. 19S4. %%hich ina. also

be applicable to feature point stereo)]. I-till int te original testing of the Nlara-Po.gi--Grittn

algorihni. a, rcported pre\ious\ IGrinson. 1981ja, b, "ith some mtdificitions proposed in Marr

and I'oggio. 19801. exteniskc additional computational experinientv, ith the alorithin ha \e been

performed. c,,pciali. on naural iIaes. 'I hese experiments ha\e led to a luImber of nmttdifictitons

to the original algorithm, as \ell as eluicidatig points that require addition,l atentiom. While no

inference is made as to the relesancC of such modifications for the human s.stcm, the mtodified

algorithmn' ma scrsc as a useful step tovards an autornated artificial stereo system.

In this paper, we "ill briefly re iew the original Marr-Poggio model and outline the pre\ iousl,

reported implementation and testing of that algorithm. We Asill then describe some of the open

questions concerning that implementation, as well as some of the modifications suggested by other

models [e.g. Mayhew and Frisby. 1981]. A resised algorithm will then be presented. Finally, we
will illustrate the perfonance of the modified algorithm by applying it to a series of natural

images. Many of the examples presented are aerial stereo photographs, in part because automated

cartography is one of the traditional areas of application of computer stereo algorithms. We also

consider an example of a robotics application, and investigate the accuracy of the algorithm in

reconstructing the distance to objects in the scene, given measurements for the parameters of the

imaging geometry.

2. The Marr-Poggio Stereo Model

In this section, we present a brief review of the original Marr-Poggio model [Man' and
Poggio, 1979]. its original implementation [Grimson. 1981a, b) and suggested modifications based

on psychophysical and computational studies [e.g. Mayhew and Frisby, 19811. Readers interested

in more comprehensive treatments are directed to the original articles.

2.1. The Model

The algorithm proposed by Marr and Poggio for solving the stereo correspondence problem

can be desribed as a feature-point based matching system, using a coarse to fine control strategy

to limit the search space of possible matches. As originally proposed [Marr and Poggio, 1979], the

algorithm consisted of the following steps.

(1) The left and right images are each filtered with oriented second differential operators

of four sizes that increase in size with eccentricity (distance from the center of the eye).
The cross-section of these operators is approximately the difference of two Gaussian

functions with space constants in the ratio 1:1.75. The purpose of this filtering is to

allow the detection of significant intensity changes at multiple scales.

(2) Zero-crossings in the filtered images are located by scanning along lines lying
perpendicular to the orientation of thc original differential operator. These zero-crossings

2



nl.ilk the 0lo.,t1,, Of Sclilic.llant channes in the orginial iitn,,iL f'Mction. i Jullerent

sea Po.sitiois o Iic end of linies ,in1d edges arc also Iilocaed.

(3) For cach operaltor l/e .1i1d orientation. matching lakes place beti cen /en-crossing

segments or lennimlitons of the saine contrast sign in the t ,o images. for d range of

disparttis Lip to abhout the %% idth of the operator'. central reieon. \ithiln this dispari.,

range. Niarr and Poggio ,,ho ed that false largets pose onl) a simple problem. becau.CS

of the rouhl barndpass nature of the filters.

(4) )isparit\ infonnation obtained b) matching fcitures deri ed from the larger operators

can control \crgence e.e i\elents,, thus allowing feature from the smller operalors

to come into correspondence. In this wa. the matching procc,s grAduall) moses from

dealing \%ith large disparitics at a low resolution to dealing \hith small disparitics at a

high resolution Isce also, for example. Mora\ec, 19801.

(5) When a correspondence is achiesed. it is stored in a dynamic buffer, called the

21-dimensional sketch IMarr, 1978].

2.2. The Original Implementalion

The first computer implementation of this model was reported in [Grimson, 1981a] (recently

an independent reimplementation of the algorithm has been reported in [Kak, 19831). ihe original

implementation essentially followed the five steps outlined above, although there were a number of

differences. Most of these changes arose from observations made during the process of transferring

the model described abose to a working algorithm, since the process of explicitly detailing the

algorithm illuminated some previously unforeseen difficulties, whose solutions led to modifications

to the original model.

The steps in the implementation can be briefly outlined as follows.

(1) Image Filtering: The left and right images of a stereo pair are convolved with a series of

two-dimensional operators, whose shape is given by the Laplacian of a Gaussian

V 2G(z, y)= o2 + 2  2 exP (X2 + }
or by an approximation to this operator, using difference of two Gaussian functions (Marr and

Hildreth. 19801. These operators are isotropic with respect to orientation, and hence differ from

the directional operators proposed in the model. (A discussion of this point may be found in

[Grimson. 1981a, b].) The size of the operator. as well as its spatial frequency characteristics, is

determined by the value of the constant a, which is related to the width of the central negative

portion of the operator, w, by the following expression:
W

Figure 1 illustrates the form of these operators.

If each picture element (pixel) is considered equivalent to one photoreceptor in the fovea of

the human visual system, then we may use psychophysical data obtained from measurements on

the human system (e.g. Wilson and Bergen. 19791 to determine the appropriate sizes of operators.

3
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Figure 1. The initial filters. Each image is convolved with a two-dimensional operator whose form is
described by a Laplacian of a Gaussian. The size of the operator is determined by the space constant of
the Gaussian distribution. Part a shows a perspective plot of a V2 G filter, part b shows a one-dimensional
slice through the center of the filter.

This led us to implement V 2G operators with widths of w = 9,18,36 and 72 picture elements

(pixels) each. It has also been argued on computational grounds [Marr. Poggio and Hildrcth, 19791

and on vernier acuity grounds [Crick. et al. 1980] that an additional smaller operator corresponding

roughly to a width of v, 4 may also be present in the human system. The coefficients of the

operators were represented to a precision of I part in 2048. Coefficients of magnitude less than

-'th of the maximum value of the operator were set to zero. Thus. the truncation radius of the

operator (the point at which all further operator values were treated as zero) was approximately

1.8w.

(2) Symbolic Features: In the original Marr-Poggio theory, the elements to be matched

betwe , images were (i) 7cro-crossings whose orientations are not horizontal, and (ii) terminations.

It has since been demonstrated [Nishihara and Poggio. 1982] that aspects of human stereo

perception pre iousl bchliecd to imply the need for terminations may, be explained strictly on the

basis of zero-crossings. Thus. terminations are not included in the implementation reported here.

It is assumed that the images have been brought into vertical registration, so that the epipolar

lines are horizontal. Thus, zero-crossings in the convolved images arc found by scanning along

horizontal lines, seeking pairs of adjacent elements of opposite sign. or triplets of adjacent elements,

4



Figure 2. An example of a stereo pair taken in a laboratory setting.

the middle of %hich is zero, the other two containing convolution values of opposite sign. The

positions of the zero-crossings are thus recorded to within an image element. In addition to their

location, two other attributes of the zero-crossings wcre recorded: (1) contrast sign (,hcther the

convolution values change from positive to negatie, or negative to positive, as we move from left

to right along the scan line) and (2) a rough estimate of the local orientation in the filtered image

of segments of the zero-crossing contour. In the original implementation, the orientation of a point

on a zero-crossing contour was computed as the direction of the gradient of the convolution values

across that segment, and was recorded in increments of 30 degrees.

Examples of the convolutions and zero-crossings for a series of operators are illustrated in

Figures 2. 3, and 4.

We note that while the positions of the zero-crossings are specified to within a pixel, it

may be possible to perform subpixel localization. Hildreth (1980] (see also [Crick. et al., 1980]

has demonstrated that in the case of an isolated zero-crossing, a simple linear interpolation

between convolution values serves to localize the zero-crossing to subpixcl precision [see also,

MacVicar-Whelan and Binford. 1981]. It has been observed in computational experiments that

strong isolated zero-crossings, such as those corresponding to occluding boundaries or shadows,

for example, can be reliable matched to subpixel precision. In the presence of texture or other

confounding photometric effects, however, the accuracy of the subpixel localization decreases,

and is probably not effective. This raises an interesting question about human stereo acuity. It

suggests that for stimuli with isolated zero-crossings, (for example, line drawings), stereo acuity

could lie within the subpixel range (lHoward, 1919: Woodburne, 1934: Berry, 1948, Tyler. 19771,

but for textured stimuli, (for example, random dot stereograms), stereo acuity might be expected

to decrease.

(3) Matching: Given a set of zero-crossing representations at different scales for each of the

images. the matching process proceeded in a coarse to fine iterative manner. The idea [first used by

Moravec, 1977, 1980] is to use a sparse representation of the images. with a coarse spatial sampling.



A.I

Figure 3. Convoltiuons of the blocks images.

for the initial matching of points. T hc reduced dcnsitN of points gre itlh reduces the search sp ice

and makes matching easier, at the expense of reduced resolution. This initial match can then be
used to constrain the matching of finer dcuilcd representations, again reducing the search space

of the matching process, while allowing finer detail disparity information to bc obtained. Thus,

the matching is guided b a flow of information from coarse representations to finer ones.

(3.1) Feature Point M~atching: Consider first thc zero-crossing representations obtained from

the coarsest filters (%kith central width wj4 and suppose that we are pi~en some estimate d, oif the

disparity in a region of the image (which we ma) initially assume to be some arhitrar value). For

a 7ero-crossing in one image (say die left) at position (x, y), the search for a matching /ero-crossing

6
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(Not tha theseach tkes lac alog th sam hoizonal sa ine hrbyasmngta h

lignrall 4ewe thmZo ahpo.mthn ero-crossings on the bloft anmagesfltre

inmthes right ihage i1tscntained cotat reginad()ruhytesm inao.

mA mas c disadinec ohesis wof arereonens and dihents.I rcIn. and azmlro-osne

of the appropriate sign and orientation (within 30 degrees) is found within a pool, its location

7



11i1li1,lk ewill IsCe. I'M voamlp~c l.( iun. 19l). (1 1ih1e " ii INic is i'iitd huti lit) atteCiIl IN iMAL

[to assiert a 11at101 1,or thC p)oint lin qlaiietui. It ie, ;ri.ii. be fildN 1S nl ~iiii'ii 'I il nille

of the thrlee pols, that mItch Is Jccelpted. anld the: disparij\ ,ssOCkitCd \&lii the match1 IN rwnOded

Inl a bUtler. Ift' MO 0I thIee o(ie pool eu001 am C01,1 nd1 .,idateC matc1h. thek 1l1ti, ni011 Ievrds, that11

in forrnjitiin fkur filtiarr diSamnbiguation.

(Onco 1l1 pkINIble oniinhigioi tIlitolhcs ha~h\c b.ilieiitd ill Itiellilpt I is made to

d~s.iibcntedouble or triple: matcheCS. IN IN is w h\ so.annoic a. 'ii 01C ti ot h on

Inl qtie ,tI0IIiadI(.~d th Sli,11 Of 01Ce dIsparnk ofl t1hC IInIXIlbiloilS nI'llies tk!hin thatl

nithNorhkuidL. (I hie Nis l th e dkiiIt\ rcl crs (Ii Ih Ue hC ti, lin)II okhiJ1 the m11Ich

comes.: dI%'.ereeot. Lci 011 0ren or e.) 11t 0hC danih ,eiiis p)Oi his a Pkllientih nviehLll (11 thC '),fie

signl as the dominant type vs thin thec rieisho-im0md. then that IN cholsenl as the IMatu. Othervsise.

the march at that point IS 'efl amblhiguLous.

(12) (onitinuity: It is possible thait the region under eonsidcraition does not lie msthin thc -,:u,

d~sparit range examnined M. dic matcher. This is detected and handled by the folhmu4 ing operaton.

If the region does lie vs ithi n the disparity range ±uw._ tb.'n excliidin! case of occluded points.

eserN zcro-crossing in the recion \kill have at least one candidate maJ in ile other filtered image.

On the other hand, if the region lies beyond the disparrt\ range .. whn the probabilit oIf a
givecn .'ero-crossing hiving at least one candidate match \kill be 11\ 0.7 [Niarr and Poggio.

1979: Grimson. 1981Ia, bl. Thus. by cointing the percentasec of .ossings \sithin a region
that have at least one match, and thresholding based on the probabilitLies stated above, disparities

wkill be accepted only in regions lying \&ithin the current dlispjat range. T-his constraint is based

on the cotni)assumption IMarr and Poggio. 19791 that surfaces generallv a i asot

mianner relative to the viewecr.

(3.3) Control Strategy: Finally, once this matching has been performned for the coarsest filter.

the sparse disparities obtained can be used to realign the images, and the process canl be repeated
ait the next finer scale. Since the density of zero-crossinps increases as the size of the filte is

decreased, this coarse to fine control strateg allowts the matching of very dense iero-crossing

descriptions vsrth greatl\ reduced false target problems, byi using coarser resoltition1 matching to

drive the alignment process.

(3.4) \crtical IlisparitN: While the matching as described aboveonly. searches for corresponding

/ero-crossing pot aloing the samec horizontal scan lines, the control strarei, of the algorithm
can easily be modified to handle small amounts of vertical disparit. Fist, note that due to the
size of the V,

2
; filters, the coarser level 7cro-crossing representations are less sensitive to local

vertical disparit than the finer level ones. N*0vs suppose that the matching has been performed
for the Coarsest filler and that the horizont~al and vertical disparity in a region of the image is
roughl\ given by d and v respectisely. When proceeding to a finer ffitr the search for matching
zcro-crossings is initially centered about this disparit . If. hoovsever, the density of zeroi-crossing

points that can he mnatched art this level is small, it is likely thati the horizontal disparity is nearly
co~rrect. but that thle vertical alignment is in error. Thus. reappl~ ing the mariching process with



2..3. Ivii of Olt Oriliiinil I iiilt icniat ion

hj ben [IOed til ,Iii ec1 \1 i ill theI f I or(it,1 J~ I'-' * I\ III (11 1 rined "I I

1-1 it SICI V011 i.in lor I0 I 'o If11i'. Flii't ,t . i~c ui l th yeeopr.i , .c nOV, ( ,lietmll% ,.lJ e I t i

corre~t di~piri(Vc,. St. id. hc ,ttiNV r diim dot i steop,mi, jic i si.d ~ K .

tor Cx.imioin mttiie mt I)IC,(1 thlc hiunin stereo s\steot. the pci-tornince of the ml: ,J.::

te'i ~scold he' LOW[.red tm hmnPerception, promi dine a mceiiis Wi eX,mnlM1Ie1 PIV:U .d. !

of the undcris Ins Model. I -.Am~ples of the testi ng Included tsk o- planar stercmgrain\

densities. mnore comple\ figiircs such its a \kedding cake and at spiral stamrcaNV. :ern I.

A hich one or both imagues had been hlurred. stereograms Asith aiddcd spaitial frcVqmer,

noise. stereogramns in Msitch one of the imaces had been deccorrclited h' different aniountU,. and

stereograms in "IhIChI one of the liages had been compressed. It. Aas found thait on thec stindard
random dot stereogramns. tie matching algorithm performed \cr\ kel1. uISUJlly 'Aith ain error -,at",
of less than one part in a thousand. On rnoisr or decorrelated siercogranis. the error raite vl as

normallx on the order Of one percent, w.hile thc densit\ of points to s% hich a dispirit\ A as assigned

decreased (and in the limit %anished).

The implementation \Aas also tested on a number of natural images.. using a .ariety of

illumination geometries and ;A ith objects of differing photometric characteristics. Examples included

a speckled coffee jai-, a basketball game, an outdoor metallic Sculpture, and a portion of the
Martian surface. [-or thesec natural images. a quantitati'e eialuation was more difficult to obtain,
precisel\ because the imaging geometry was not controlled, but it "as observed that the qualitative

performance of the algorithmn vas still good.

2.4. Discussion

While the initial testing of the algorithm did serve to Support the adequacQ of the Marr-Poggio
algorithm as a model of aspects of the human streo system, and while the overall performance of

the matching algorithm 'AaS v ery good, a number of weak points in the algorithm were illuminated

during this testing.

2.4.1. Cont inuity constraints

It Aas observed that must of the actual matching errors occurred along discontinutics in

depth. for example at occluding boundaries between two objects. [1his follows from the use of

matching statistics over a region as a means of distinguishing correct matches from random ones.

Theoretically. this test is based on the observation that surfaces are generally smooth relative to
the observer, and hence disparity Ail] generally also he smooth. While the theoretical observatior

is sound. the implementation of it by means of a statistical measure over a region of the image

has some difficulties.

9



Figure 5. The probhleim of the coflifliiuit con.ii nheir (ihjc,:i houndrnes.

This is rtiot easilk illu' tr~ited b3 the folIPHI u e~arnple. SUlPPOSC U th egion o' er %&hich the
mnatching Statistics are measured is a square of side d ( while this I, die Casiest to implement. it
is not critical and the follo~ing arguIment holds, for other shaipes as Acll1. l-urthcr suppose that
die stecogram consiss of t'~o planair surfacs ' ith a sharp brcak in disparil\ betwkeen them. I et
the density of /ero-crossings be p and presume that the region is positioned such that i percent
of the region co'.ers surface A and chat I - I percent coi crs, surface B (see Figu w 5). Finall).
assume that thc fixation of the cycs is currentl\ positioned on surfJLe B. so thait the portion of
the region coxering the surface A is out of rangpe oif the matching process., If (is the threshold
for accepting the matches in a region as being s t-hin dhe range of the matcher. (for the analis
of Marr and Poggio [1979, p3171 0.7 < 1.0), then the ques-tion ito consider is for %4hat %alUCeS

of x the percentage of matched points in the region v111 exceed i.

In theory. the number of matched points in the surface B regioin is exrected to be pd(d - x).

and the number of matched points in Whe surface A region is expected to be 0.7pxd. Thus, the
percentage of matched points is given by

pd(d - ) - 0.7pzd -03X
-- 1 03pd(d -x) -pxrd d

The values of x for which this percentage exceeds (is given by

The most conservative threshold would be (= 1, in which case x =0 and the only position
of the region for which the dispiirity values are accepted as correct is that in which the region is
entirely positioned over surface 1B. While this would work on perfect data, in practice it is likely
to be ovcrl\ conservative, causing a large reduction in the percentaige of zero-crossings to which
a disparity is assigned, although the error rate should be virtuaMl zero. One difficulty with real
data is that even for regions of the image wAhose disparities arc completel\ within range of the

matcher. the zero-crossing points may no~t all have matches. 1-or example. geomectric distortion in
the sensors, perspective distortions in the imaging geometry, noise in the irradiancic \alues and local
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,i11:c ,Ci -. 'l5, i: poluin dt.,, not h,i\C an as,i!ned m lh, . "C %Mild like to piCC'rC suII

infollnlir *. ll t sinl j s L.ns .ui\ e thicshold. Consider. hoteer, the coniprolnilsc case of

(I N. In t11 .11 .lI.' .1hC ' its 0I) the poslitioning (If dIC region ate rinen h (, - (lJd.

ald in this t 1u), , I n;'i It' ) disp.iviu 1 ,u i 1 Iiles w ithin 0.5d pixel, of the edge (if sUrface It

'ill he ,. e(C.d r, i. I 'L t I his is osci e\d InI eMarples olf he testilg of the algil ithmn. and hile

the nunber oi ,jih erir,, is smll . , is tlini\otdahie Aithin the context I this !, pe of sttisticail

ehe k. Ihis prohlcm %till he ie.\ ipparont in the Case of thin l)ongFaied s rfa.cs suspeIndCd IhoC

a bac~kroflld. where hI ll, 'dihs of the sLrticCs arc less dan te diameter of the sil ish.e rciwi.

for example. in an aerial stcrco imaige of a highAay interchange.

One means of omercoming this problem is to o)bser\c that while it is dIfliull to ensire

that a region of the imigce corresponds strictl to a single surface, edges (or icro-crossings) in 3

filtered image A, ill generalls correspond to a single surface, since the\ usually reflect changes in the

surface topograph. or the surface photometry. Thus. rather than imposing a condition of" disparity

continuity over an area of the image, one could instead require a continuity of disparity along a

contour in the filtered image. This is essentially the figural conlinuiiv constraint of M\a\hek and

Frisb 11981]. and has been suggested in a slightl) different form in Arnold and Binford 119801.

Thus, we need to deri\e a contour based analog to the regional continuity check used in the

original Marr-Poggio implementation.

Once the feature points have been matched, it can be observed that the collection of all

matched points is composed to two distinct sets. In regions of the image where the zero-crossing

representations lie within matching range of the current image alignment, the matched feature

points tend to form extended contours. Elsewhere, the matched feature points tend to lie in

scattered small segments. The goal of the figural continuity constraint is to distinguish between

these two situations.

We now derive an explicit form for the constraint. We know, by applying Rice's theorem

[Grimson. 1981b, p. 78]. that the expected distance between zero-crossings of the DOG filter of

the same contrast sign is given by

5.29w
8-

2 f2

Then given uncorrelated left and right zero-crossing descriptions, the probability of no match at

a particular disparity is

1 - -

a

and if p denotes the horizontal width of a matching pool, and v denotes its vertical extent. the

probability of no match within a pool of dimensions p X v is

and hence the probability of a match in this pool is

i 11



Now we Coiisidei thle ploh'uhilit\ of' r.indoiiil\ li ig~cmn l %ennir i Ieia contour
segment L 0 lenth A- III one niae.c Ac % .int III dicicinine the piohhlt that i oit thoise k

Point-, ha,11 1 mat,1ch Athinl thle coiicNpolding pool inl the Other uige. Alhen the two imaiges arc
Uncorreled. Clcarlh .l;, is ai~ en b\

IuS. gi en some thircshold, on the expected error rate. suich that 0I < 1. w e can determine

conqiraintts onl the length of' .1 matchied /ero-criiss inp Wontour thait %. il he icccptkd ,Is cor responding

to a correct match. M at i\. pi'en at threshold (.and at \il ue for the number171C of' unmal~tched gaps

in the contour. k 70i. we can find the minimluml length k of' a contour 'such that P', < f.In

particular. we ict

,- IT61 {k I "Akk- 2 < r

denote the threshold on the length of matched Contour required to satisfy the figural continuityI constraint, for some number of gaps. Note that this is a functioin of the cxPOLted error threshold
. as well as the hori/ontal pool sizc p. thc vertical pool size v. and the mask size tw.

Thus w~e ha~e dleried at specific form for the figural continuii\ constraint, namely that the

length of contour that must he matched, as a function of the error threshold, as well as the

parameters listed abo'e is gi~en by the %alues of f,.

2.4.2. Vertical dispariti

One of the implicit assumptions of the Mairr-Poggio algorithmi is that the geometry of the
two sensors yields hortiont.l epipolar line,,. While it i,, pw~sible to rectif% the imnages to remose

gross geometric distortions c.IuSed h.% factors such a-C.h 'osn and ,MCaer tilt, there are likely
to be local distortions of the epipolar geomctr due to geomietric distioruons in the sensor, or
perspective effects. Furthermnore, the dis;crete nature Of the icrol-crngi represenitation may cause

small variations (on the order of a pixel) in the positionN of the ierfl-cros,,ings. These factors
suggest that although large scale effects on the cpipo'Lr goometr can be handled by some type

of image rectification. there may still be small scale %ariations on the: epipolar geometr that must
be handled by the matching algorithm.

In light of this discussion, it is interesting to note recent e'idence concerning the effect of
vertical disparities on the human stereo system. It has been obsersed psychophysicall% [IDuwacr

and van den Brink. 1981Ia. 1981h] that while up to a degree of vertical disparit\ can be tolerated

by the human stereo system, almost all of this is handled by inxoking an eye movement to align
the images. In the absence of eye movements [Nielsen and Poggio, 1983], only about 2-4 minutes
of vertical disparity can he tolerated. One interpretation of these results is that the stereo matching
mechanism is capable (if perfonning the correspondence process only if the images have been
nearly rectified, and that grosser distortions of the epipolar geomryu are corrected for hy changing
the alignment of the eys.

12



this colci in) lie (111(0 ing ilannei. iiiatile %eriica dispaii' %,is vismcd I() be eio O .liliotiph
if iiono.'iil.ir cues \&cricopul .uiJCd in11o thle s\ StiCn. it \ktititd he p)OSSible to pi ewinp1lUie d
less arbitrary \CrTlieal allinment ot thle i1mges I~aand Iloggio. l9SOIt. and die matching %as,

pciftorniied at thle coar",ss resolution1. BlCin(sC o1' thle 1ir0C Su of thle filter. tie ccts of ecrtical

disparits in thle imagves is less lkcls tolalke t thle pertonnance of' thle imatcher. Suippos e Cconsidcr
Some regio tth ina.an usth dipii nimincniued h% the coairse fitter ito

align the ilnaces. If (he finer filtereOd image12's L,1nin0 h e rmiched for cain he onill\ \i sparselk
matched), this cain he ik en as an in1dicit mol t11,t thle nnag1Cs ha* hemil CorreCtlk Ailnd Ito rcinos

an\ hori/ont,1l disparity, hut that d 1ma TIaOunt11 of \ ertical disp.irit. ina\ he present. I huL s. b)
.1plking smnall ali11nmentI corrctiorn in the s ertical direction, the imagies can he hroughti into

alignment. thercb\ increasing the densit\ of computed disparit% \alues. 'I h is beha\ ior v as ohser\ ed
in COMPUtational experiments onl a lnmber of natural images.

Although the performance of the Marr-Poggio-Grimson implementation \kas qualiitiel\

consistent with the psychophysical data, the use of a stringent epipolar matching geoimetry "as

prohably too strict. In other words, while it is feasible to use gross alignments of the inmages to
accounc for large scale geometcric effects, a strict epipolar matching st-rategy ma\ be too sensitise
to small local distortions in the 7ero-crossing descriptions, either due to geometric or perspective

effects, due to noise in the early processing. or due to discrctization effects. As a consequence.

it is suggested that the matching of iero-crossings be relaxed slightly. (Note that in the original
Marr-Poggio algorithm, the use of oriented filters suggests that \ercical disparity effects sould be
more tolerable.) For example, suppose there is a zero-crossing at some point (x, y) in the left
image. Thei initial Marr-Poggmo implementation \%ould search for a corresponding zero-crossing in
the region

fl )Ix -d - w < z' < x +~ d 4 u.)

in the right image. Instead. Ae propose to search for a corresponding /ero-crossing in the region

where (is on the order of I or 2 scan line; . Note that while this Aiml) make the matcher less
sensiti~e to small distortions or noise, it limll also reduce the accuracy of the matching process,

since a single zero-crossing point in one imnage could potentiall\ be matched to all the points on
a zero-crossing segment lying within this Aindo% in the second image. ielding a small range of
disparity values, rather than a single one. ]he effect %ill become more noticeable as the orientatin
of the zero-crossing segment approaches horizontal.

We also note. while discussing vertical disparity, that seseral authors have recently proposed

using measured vertical disparities to obtain the additional camera parameters needed to convert

disparity directly into distance fMayhew. 1982-, LonguetI-Higgins. 1982: Mayhew and Longuct-
Higgins. 1982-, Pradcn . 1982. 19831. While the algorithm described here does not use the sertical
isparity information is this manner, it is ptossible to augment thc algorithm to do so.

13
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2.4.3. ( onlrol sirtilhgit% and searih spates

i-inding the correspondence hetc een points in the to iliees caln he oisidered ,is 1 pro.blet

1of' ,carching a space of possihhe corresipdences for the correct soltion. In considerig this 1. pc
of formulation. troti separate issues must bc considered.

1. Restricting the set of possible ahernatti es. Ilhe kcy point is to iniprmc the reliabilit of
the computation. b attempting to ensure no lil,,e positi cs. ind as foA falsc negatics
as possible, i.e. no incorrect inatche,, and as fcA case,, of no ,ins er vi, possible.

2. Strategies for efficient1.N searching the space of alternati cs to find the colirect one.

We Aish to separate these tvAo issues. since 1Ahie the-% arc rel.ited. techniques used to reduce

the space of possible correspondences need not be inextricahl tied to purt)L ular strategies for

searching for those correspondences.

First. %c consider means for reducing the space of alternatives that must he explored in

order to find the correct correspondence. Assume that each image is , x v. I lien initially each

point in one image has n' possible matches. As %%ell. there are ,12 points in each image. so1 a

straightforaard. British Muscum style, search algorithm requires n' total comparisons. HoA can

we reduce this?

Feature point systems. %%hile suffering a reduction in the densit% of computed depth %alues,

can significantly reduce the space of possible correspondences, by attempting to restrict the

computation to "distinguishable" points in the images. If the density of feature points is p, then

the set of possible matches becomes p,i 2 and the number of total comparisons under the British

Museum algorithm is pn 4 . Note that in the case of the .Marr-Poggio algorithm, p saries with the

size of the initial filter. In particular. the expected density of zero-crossings is

c'w

where

C . .. . 1.87
5.29

by the analysis of [Grimson, 1981. p.78]. Thus, the number of possible candidates for a

correspondence reduces to
n 

2

and the total number of comparisons involved in the search is

n 
4

C2IO2

The next major constraint that can be applied to the matching process is the epipolar one.

If w c take a liberal interpretation of this constraint, then a point on line y can be matched only
to points on lines v' such that y - v < v' < y - v, for some constant v. In this case. each point

has a space of possible matches on the order of

(2v - 1)n

and the total number of comparisons over the whole image is

14
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Ihe final ni)aI hii uI,-, ll t uIIed ill the M1arr-Pogio algoitithni i that of continui . % hich

is intended to rcduce the number of possihle miachiiig candidalcs from order n to I. 01' course.

one Caln cle'l.l constILirct SlItLtIOns ill ' hiCh tihe ILtlmhebr Of mtchinv c';Adidates is not rcdulced Lo

a tlnilqlC ,oltio1. bi I ICceiier.1 , sie dIscLs.ion in ie prcious section indicated, die 'conltilllit,

cnstr.int c.in he stiticttr.d No Is to reduce the proh.ihilit.\ of ,fale matches to \irtuall) /ero.

Note tit all of' the constaints introduced in this discusion ha\e been n,tchine constraints.

that is. thcs ha,,c reduced the nubner of possihle initches for a gien point. As a consequence.

the total Si/e Of the sC.llClI sp.IcC has ilso been reduced, but it is important to note thiiat all tie
disLussiot; to this point hms heen independent of the particular search strm;eg\ to he cniplo.,ed in

finding corresponding mltdhes. Ihis distinction beIAMn the use Of madtching contriints to alter

the space of possible correspondences. in order to ensure the existence of a unique soluttion, and

the use of efficient techniques for searching the space of solutions to find the correct solution.

is important in light of the final constraint of the Marr-Poggio algorithm, the use of multiple
resolution representations of the image.

One use of multiple resolution representations is in dealing with false targets. For example.
if a fine resolution feature point representation has more than one possible match for a particular
point, the correspondence information at a lower resolution representation can be used to resolve

this ambiguity. This was one of the main uses of multiple resolution representations in the original
Marr-Poggio algorithm. 1fhis disambiguation technique was also inicterined with an efficient search
algorithm as well, however. In particular, the matching of finer level represtntadons is directly

driven from coarser lccl correspondences (whenever possible). Not only does this pro%ide one
means of axoiding false targets. but it is also an extremely efficient method for searching the space
of possible matches, as is indicated in the following discussion.

Let wo denote the size of the smallest image filter, and assume that we have k + 1 such
filters, each one doubling in si7e from the previous one. Then, by the discussion above, we know
that at the coarsest leel, we must search on the order of

n2 (2v + l)n (2v + 1)n3

t2k wo c2kwo - C22
2

kW
2

alternatives in order to find correspondences for all the feature points in this level of representation.

If the matching process is driven in a coarse-to-fine manner, then at each subsequent level, the
image representations are aligned based on previous matching. and for each feature point, we
need only search an area of size ew to find the correct match. Thus, in principle, we need only

compare

(2t+ = (2v + 1)

points. This implies that at each of the subsequent levels, we must search 2v + I comparisons for

each of

n21- W
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points, or equimalently.

-12 - - -2

cu1  [ 2. I " ,22

points. I his is still O(') hut 3s k increases. N&e See that the anioint of sc,.rh imn~ I'd in finding
feature point correspondences reduces to the order of the dimensions of the iimie. i.e. vi . I hus.
one of the advantages of multiple leel representations. besides its use in disamhiguatin of false
targets, is its efficiency in finding the correspondenccs espcciall\ in sitiithions. s.uch as the human

\isual systcm, in , hich high resolution information is onl\ required o, cr small portions of the

image at any one time. (Compare this estimate of ()(,12) polint"ise coiparisons w ith the results
of [Ohta and Kanade 83] of 0(n') primiti\e computations for a general 3-I) search algorithm and
0(7 '1) primitive computations under certain limiting assumptions.)

It is curious to note as an aside that one could use the abo\c expression to predict the

number of levels of representation tor equivalcntl\. the number of '(, filters) needed to reduce
the search space to O(n2 ). If we consider an area spanning 80 on a side with fo'.eal-l\exl receptor

spacing, then a straightforward calculation predicts that b filters are necessary to reduce die search
space to O(n 2 ). Interestingl), recent investigations by Wilson 11983] proide eidcnce for 6 such
filters.

If the key consideration is not speed. but rather, high resolution depth information at all
points in the image, it is possible to propose an alternati\e search strategy. while still taking
advantage of the disambiguation properties of multiple resolutions representations. Rather than
driving the matching process directly from the coarse level information, we can instead use that
information only when needed for disambiguation.

As in the original Marr-Poggio algorithm, for any given alignment of the images (fixation of
the eyes), the search space is restricted to a range on the orde, of rw. so as to a\oid the possibility
of false targets. Any candidates that satisfy all the matching constraints are accepted as possible
correspondences, and stored away. If the total range of disparit. oer the entire image is within
this eu range, then we are done. If not. however, then the same matching process is repeated at
some desired spacing in depth, and the algorithm is swept across the entire range of disparity.
While for each given alignment of the tmages, only one match is possible, it may be the case that
matches for the same feature points will be found at vcry different alignment positions. If this
is the case. then this false targets problem can be dis,imbiguated by choosing the alternative that

best agrees with the correspondence information obtained at coarser levels. Clearly, such a search
algorithm requires a sweeping of fixation across the entire range of depths. and while it will result

in high resolution depth information everywhere in the image. it does so at the expense of speed.
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3. A Modlificd MIarr-Ioggio Slereo M ,tcher

We h, e incorporated ,ill of' thec conideiations into i new algorithm, Alhich Ae describc

bclo. While the modlications ,ere rmide ill part hecmust of recent ps)chlphsical c\idencc

concernnp the hulmn stereo s stcIm. "e %%l ,I dIcsI its pio' hle merits as a stereo sbsem for such

,ppllctlolls Is , I, mlll t' i. a ll .idn ()12,Idll.\ ,i nd robolicS ill the n)cxt Sclion.

3.1. lhe Nlodified \Igorithin

Ae %ill first Outline thle basic ilgorithmn. and then pro\ide more detal~ed des.ription\ of

each of the st ps. Ihc llisic steps of the niitcliinm ileoridim can bc sntimriled ill the followAing

niMner. \otc ihat st p 0-3 are identical to the original dlgorithm. The main concentration on

modifv in g the algorithm has hen at the ItI[ching stage. Also note t at steps 4.1-4.3 are an instance

of Marr's proi', h /cf. c mm,',lI ,t' [Marr. 19821.

3.1.1. Outline of the Algorithm

(0) l.oop over levels: We initiall] choose the coarsest level of representation, i.e. the one

corresponding to the largest image filter, and iterate by choosing successively finer levels of

representation.

(1) (onolution: Given a level of representation, the left and right images are convolved

with the V'2G filters of the corresponding size.

(2) Zero-crossings: Given the convolved images, the nontrivial zero-crossings are located and

marked with their contrast signs. These zero-crossings descriptions form the basic representations

from which correspondences will be sought.

(3) Loop over fixation position: The relative alignments of the two images are choosen. The

simplest method is to initially choose an alignment corresponding to some lower limit on the

disparity of the images, and slowlh increment this offset until some upper limit on the disparity

is reached. 'his increment could he a pixel at a time, or in terms of some larger fraction of the

width of the matching area for a given fixation position.

(4) Matching:

(4.1) Feature point matching: Given a pair of zero-crossing representations, from the current

level, and given a fixation position defining the relative alignments of the two images, feature

point matching is applied. For each feature point in one zero-crossing desription, this involves

searching an area of the other zero-crossing description for a zero-crossing of the same contrast

sign. This area has a vertical extent about the same horizontal line in the other image that is

limited to a small number of scan lines, and a horizontal extent, of width defined by the size

of the underlying image filter, about the same position in the other image, offset by the current

relative alignment.

(4.2) Figural continuitv: Once all the feature points have been matched for the current level

of representation and the current fixation alignment. figural continuity constraints are applied

to prune tie incorrect matches. This involves tracing the zero-crossing contours, searching for
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'ol.guoult intcled sc'i ic of those c0 mtOUIS lisc h .h i. eCds,.ccd a 1h c.h old %khosc .Ilue c Lan1

he deterimined a ptI r I om the properties of die undcrl)ing V'(; filters.

(4.3) Ih.s,,imli P,.q u, Uladaw: An matched katurC point contours l hich pass the figural

contlnuit test are then added to disparit% map. recording the rmeleant disparit for each feature

point in the accepted contour segments.

(5) 1 oop: Once this computLation of disparities vithin the defined range about the current

image .lignnient has bcen completed, the fixation position is updated bh looping to step (3).

(6) I)isainiguation: When all the fixation positions hac been processed. \ke are left with a

dtsparity map represent~mion that contains all matched /ero-crossing segnicnts. v ith their associated

disparities. We no\% check this map for possible double matches. An, such amLbiguiticS are resolcd

b. checking the disparities "ithin the same region of the representation at the preious lecl (if

there is one) and accepting onl those disparity values at the current lcel that are consistent

%ith those %alues (i.e. lie within a predefined range of the coarser lesel disparities). If this

disambiguation does not succeed. either because there is no coarser lesxl. because there are no

disparity values within the same image region at the coarser level, because none of the current

level disparities lie %&ithin range of the coarser level ones, or because more than one of the current

leiel disparities are consistent with coarser level disparities, then all the alternati\es are discarded.

(7) Loop: Once the final disparity map for the current level has been completed, the process
proceeds to the next finer level of representation, by looping to step (0).

(8) Consistency: When all the levels of disparity information have been computed, one
final test is possible. Each disparity value at the finest level of representation can be tested for

consistency by checking that, within the same region of the previous disparity representation, there
is at least one disparity value that is consistent with the current value.

3.1.2. Dctailed description of the algorithm

We now turn to a more detailed description of the different stages of the algorithm.

(1) Comolutions: As in the previous implementation, convolve the images L, R W~ith V 2G(w)

filters, for different values of u,. For notational convenience, we let
LC,(x, y) =V 2G(w) * L

RC,,,(z, y) = V2G(w) * R

denote the left and right convolutions, that is. for different widths w. the convolved image forms
a two-dimensional array indexed by x and y. Generally, we use only 3 or 4 values of w, for

example, w = 5, , 17,33 pixels.

(2) Zero-Crossings: As in the previous implementation, compute the zero-crossings of the

convolved images. We Jet

18



I,.,, (. , ) ne ,mit',,e" /cro- s:ro s of ,(',.(r, )

II1,, (x, y) hori/ontal ,cro-crosin s of f(',(x y)

,,(.r, y.) ll ./cro-crossings of I(',,,(.r, .j)

I',, (r,) posits ec ,'ro-cos,,in of Ia ',,(J',.v)

Ii.,,,.(', y) -- niegaiti c,",O-crsnv5, of 1/(', y)

Il,(x, y/) hori/ontal /cro-cioss ls of h'C,,(r,v)

I?(Z,(r, y,) all /ero-crossings of hl(",,,(r, y).

Each of these is a bit map.

(3) 'i\ation position: Initially choose the alignment of the tmo images to correspond to sOnTmC

preset lo cr limit, and increment b% a specified amount until the alignment exteeds sonic preset

upper limit.

(4) Matching: The matching algorithm can be subdi\ided into three sections. FirsL the

feature points are matched: then. figural continuity is applied to the rcsulting matches: and finall).

any ambiguities between matches are resolved.

(4.1) Feature point matching. The feature point matching portion of the algorithm can be

summarized as follows. Suppose we are dealing with zero-crossing descriptions corresponding to

some particular filter of size w0 . Ghen a disparity do, we construct an N x N x 2wu local disparity

array M:

MI(x, y, r) = &l'(,)A JP ,0 z +, do + r, v)]

V { YN0 ( )A~ Vf RN, (x + do + r, v~j

where 0 < x < N. 0 < y < N. and -w < r < w. Thus. each slice of M(z,y,ro) given by a

value ro of r is a set of matched feature points, within a vertical range of ±(, for a local disparity

value r about the current convergence value do. Note that positive zero-crossings are matched to

positive ones. and negatives to negatixes, over a vertical range of ±f, and over a horizontal range

of ±w about the current alignment.

(4.2) Figural continuity.

In order to distinguish correct from random feature point matches, we apply a figural

continuity constraint, by restricting the accepted matches to those extended contour segments

whose length is sufficiently large. First, we need a means of defining a path along a zero-crossing

contour. If LZ,(z,y) = 1, that is if there is a zero-crossing at this point, then we define

L,.o = (U, v) to be the next point along the zero-crossing contour. In other words, if the vector

r = (z, y) is an index into the zero-crossing array, and if LZ,.o(-O, Yo) = LZ, (ro) = I then the

ordered sequence

re, L.,o(ro), IL,.o(fL,, o(rO)),...

traces out a zero-crossing contour.

Then. given a threshold ( on the expected error rate (0 < ( < 1), we need a threshold on

the length of the matched contour segments. fly the previous discussion. this is given by
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%here 'k, k is gi\ en b\ equalion (M . I Ilk N. A C let f , ,, dIJ ftC the t ifl1 1i Icnn Ilh, r.qulired

hs contour,, (i . 1 and 2 glip,, respecn lc.. I hen the pio.cdtLrc I'M figioil coiIlull can11 he

specified as follors.

Figural ('ontinuitl Procedure

Compress all the Mtches into one representution:

A17'(X,Y) V M(i,y,r) Vr,!y.

Initialie the output array:

SAl(x,Y) = 0 VX, Y.

For each point ro = (xio,yo) such that AMT(ro) -1, appl\ the following procedure. Set:
g = 0 • gap counter
t = I • length counter

S {ro} : contour tested
p = ro contour pointer.

(0) If IL,.o(P) =re

then we have completed tracing the contour, and it is not long enough, so exit without
saving the contour;

else,
if LHo(f/L,,.o(p)) = 1
then the next point is a horizontal zero-crossing, so go to (1):

else,

if M T(fL, .o(p)) = 0

then there is a gap so increment the gap counter: g g + 1
and go to (1);
else increment the length counter: t = t + I
and continue.

(1) If g > 2
then the gap is too large, so exit without storing the contour;

else,

if g = 2,

then,
if t _ t2
then save the contour: Vp E S,set SM(p)= SM(p)V MT(p)

else go to (2).

else,

if = 1,
then,

ift > t
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1111 ',,oI\ C hccihiuoI: Vp sci .S Al (p) A I (p) V A/l 7(p)

i.Isv Vo it) (2).
e'lse.

if o.

then,

if I > f(o
Ilitn sic thieci Cotour: vp c c, set SA I(p) ,S'AI(p) V Al 7'(p)
else go to (2).

(2) Inciement the contour collection, setting S = S U {fj.... (p)j

and increment the contour pointer, setting p = fl..,o(P).
Go to (0).

(4.3) Disparity updating.

When this procedure is finished. SM(p) contains all the matches for this alignment that pass

the figural continuity constraint. Now, we need to update the global disparity array D,,,(,y,d).

This is accomplished by looping over all values of p and applying the following procedure.

Disparity Update Procedure

if
SM(p) = 1,

then set

D.. p, , =_ SM(p,o)(do = 1.

That is. we mark a I at the point in the three-dimensional disparity array corresponding to
the average disparity of the local matches. Thus for each d, the set

{D,..(p,d) I Vp)

is a disparity slice of the matched images.

To create the total disparity array D, we can simply let do range between preset limits d, to
d4. and iterate oser the previous steps. Note that this is an extremely simple control strategy, which

could clearly be augmented, for example along the lines suggested in the original Marr-Poggio

theory. In cases where a detailed, fine resolution, disparity map is desired, this simple control
mechanism should suffice. In situations in which speed is a critical factor, an attention focussing

mechanism that uses coarse disparity information to guide finer resolution matching is probably

essential.

The above algorithm has been specified for a single operator size wo and can be applied at
each of the four si/es specified earlier. The original Marr-Poggio theory proposed that a coarse to
fine matching strategy be used to guide the matching at finer resolution representations, in part
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I)C .ti A t VI II I Al 1 1LI It I of St I 11,101c' ic c IC'C \N e ;I i I: I, 1'a1nii.L dhisit\ ill tho: /Ce Iu ,Ii2 .

'A liilQ %%c ha' e split till the e cni i IJIL dSJCi Ise a (pIf th l.P p m..il h sV,,ecptitg thle im1,1wS

thiotigh the enltirc raiwe of po\\ihlc dtip.wici f~~or o'.1 hOPCer101, IC eUNe of nIMhtplere11 iiioi

operator,, &' d 11ean1s (11 ,~il~LIIii till re'111,111,I pvir\t

(S) JLoop: S111pl1I looIp to step (3) to min enint iller aH sih jimige aligrnments.

((I) I i "iibiguation. Ini pairtictilar. \A111 hue 1 dn '112o sing 101 mak %iI he assigned a /cro-crossing

point. fo r ch:) alignment of the iti s .it is p s',thle that ifloiC 111,11 ICn CflntOtit % ill be

maitched toI tlic point, as the disparit. svcps, Lh rouh the rangLL'e d I < do, 'AC can use the

diusparit% in formation ohrincd at coarser channmels to lhelp disimhiit 01h' is ,C . I Or CACh L1ha ii nel

size W(), "c pe'rform the following operations.

F'irst, "c project [lie disp-.ity arra). setting. Vp:

(d. if IkiP a) =- tad
PD.. (P) - null. if 1), (p, a) =O, Va

1.?. if otherwise.

Thus, if there is cxactl\ one match, PD, 0 (p) equals thc disparit) '%alue of that match if there
is no match, it is set to null.- and if there is more than one match. /'),,.,(p) is marked with thc

special character "?". If wo is currentlN set to the largest possible filter size, then nothing can be

done. If it is set to a smaller filter size. ho\%ever. the-n let wt denote the next largest filter size and
proceed in the following manner.

D~isamnbiguation Procedure

For each point p such that PD.. (p) let

A D.. D(p, a) l

dcnote the set of possible matches for this point.

If there is a point p' in a neighbourhood kA,,,(p) about this point, such that

and

PD., (p')34!

and such that

for some all E A.

then a, is a legitimate disparity value.

If there is exactly one legitimate element ai of A,

then set

else set 
P.,()=a

PD. 0 (p) null.
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In t, II, %k.I . e. C CeaIIc th ' d ,11.[11 1 ,,p Ill, , for the 1iurrCnt filter si/c uI,.

7," I oop: % C cT.n Itllc 111, [)kccdic LH Ci dr1aCu.L \,liic% 10 f IP ,. When tisis If ini,,hed.

%4c li,i\c a Cric,, ol di, ipiiit iuialv II), 0! 0 IIIC,'lP2)/ Ii".' itioni a i, decic.is C .

(S (o wisilnc)i. I hc di,,.vmnhietn! poLc,,, dc'sc.rihcd aho\ c c., he considcrd as ,a pe

of cositcu , hock. Ihat is. 11 ihic arc (%% o w o us tii. to \k thitl the Imis ,f the fipuraI

COltinuit. cOl'ia'it J 121\ en c 1nto 'i',,0 L,1 n e . o,irscr Ic'ci infollili1tion to e imin (c

thC Incorlecl i itch. Ihi riches oil tie avniiptiou thii the corrc[ cihotom ssll I C accpt'd h.

fig ralI CoIi(Iiii[. Ihicre in.i. al So he cuc ltuc,, f 1 1 hin s thI tc corrct oItour is not1 IcLCptCd.

for cimpi¢ hc.i sc it i k'clUded In oe1C 0( 111C IIIi.LICC h(ut in . hich ll iiCOUC.rCC Co ihoUr paSCs

the figuiral Coiitlit, coitstrailit, and is accepted as it correcl lic. VhilC this occur" crs rarcl.

(cmpirical ohser\stiin, sti est that lcss than 0h.0., of the matched /cro-crosing contours hai\e this

problcm), it is po sible to appl a consistenc\ check to the c 'mputod disparit) maps to remose

this possibility.

(onsisicnci Procedure

GiCn t) Io adjacent filter sizes iv, < ut, Vp.

if I'Ik.(p), null
then.

if .k,(p) is empty, leave 11),,.(p) as it stands.
else.

if there is a point p' c ,,(p) such that PDk,.(p) - PD,,,(p')l <

then lcase PD,.(p) as it stands,

else. set PD..(p) = null as it is not consistent with the coarser
resolution disparity map.

4. Examples

We will examine two different types of stereo imager in this section. a laboratory scene

with many of the characteristics of industrial robotics situations, and aerial photographs of natural

and artificial terrain. The intent is both to provide a means of examining the performance of

the stereo algorithm outlined in the prexious section, and to consider the potential applicability

of such algorithms to automated stereo acquisition of depth information, both in robotics and

cartography.

4.1. Laboratory Scenes

We consider first an example of a laboratory scene, shown in Figure 2. The scene is composed

of a set of wooden blocks, of diflerent shapes and lying at different distances from the cameras.
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Figure 6. The setu f maiched zcro-crossings for the hloks image.

lhc images ,cie taken Aith an Hitachi CCI) camera, and are 288 b\ 224 pixels each. Im. images

contain gre,-leels from 0 to 255. although the contrast range is more on the order of 10 to 110.
The cameras %ere positioned roughl. 1500 mm from the foremost point in the image. namely

the front of the cyinder. Aith a separation of rooigh)) 290 mm. lB rowighl'y \he mean that the

distances were measured to an accurac. of a fes millimeters.

The left and right images 'Acre convolved %ith four different sized VIG filters. %ith central

widths given by uw = 17, 13,9 and 5 pixels cach. these consolutions are illustrated in Figure 3.

The zero-crossings obtained from each of these conolutions are shown in Figure 4. Note

by comparison to the convolutions that most of the zero-crossings in the support plane have

\erv shallop, gradients, corresponding to low contrast changes in the images. The positions of

such zero-crossings tend to be sensitive to noise, an issue to which ',e Aill return shortly. As
has been demonstrated in earlier implementations of the Marr-Poggio model, the density of the
zero-crossings is directl. proportional to the size of the V'G filter. Note also that the zero-crossings

of the largest operator tend to capture coarse features of the objects. such as their occluding

boundaries, while the 7ero-crossings of the smaller operators tend to capture in addition finer

details, such as the wood grain on the objects.

The set of zero-crossings from the finest level operator to 'Ahich a matching zero-crossing is

assigned by the algorithm is displayed in Figure 6. Note that the figural continuity constraint has

removed virtually all of the matches corresponding to the shallow zero-crossings of the background
plane. As we noted earlier, these shallo% zero-crossings tend to be sensitive to noise in the system.

and as a consequence there can be a noticeable variation in the position of such zero-crossings,

due to this noise component. One of the advantages of the algorithm presented here is that
the variation in zero-crossing position due to noise will generall, violate the figural continuity

constraint, and hence such matches, with inherently noise disparity information attached to them,
will be pruned from the final disparity data. We should note, however, that there may be other

edge detection techniques that are more effectie at removing such noise-sensitive features prior
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Figure 7. Contour map of the blocks image.

to the matching stage [f)r example, Canny. 1983].

The %ertical disparit. in this set of images covers a range of ±3 lines. To obtain the results
displa~ed here, the algoridm 1Aas run at three different %ertical alignments. and the results of each
pass of the algorithm were merged into a single disparity array.

Finally. in order to display the results of the stereo algorithm, we apply the following process.
We first interpolate the disparJi information pro\ided by the finest le\el channel, using a model
of visual surface recontniction based on the image irradiance equation [Grimson. 1982, 1983a,
1983b]. To do this. we use a portion of an efficient multi-grid implementation of an alternative
but similar surface interpolation model, deeloped by Terzopoulos 11983. 1984]. Given the output
of this process. which is a dense reconstruction of the disparity o%er the image, we plot isometric
disparity contours, as shown in Figure 7.

The isometric disparity contours clearly demonstrate the local variations in depth of the
objects, as computed by the stereo algorithm. It can be seen that the isometric disparity contours
are not perfectly parallel, as might be expected from the shape of the blocks, This indicates that
while overall the computed shape of the objects is correct, there may be a certain amount of local
variation in the disparty values, leading to a distortion of the isometric contours. This is further
illustrated in Figure 8. which shows a perspective view of the reconstructed surfaces of the blocks.

To further evalute the performance of the algorithm, especially the extent of this local
variation, we performed the following additional tests. First. the disparity information was converted

to actual distance values based on the separation of the cameras, the angles of convergence of the
cameras and the size of each individual pixel. 'hese parameters were measured for the geometry
used to record the original stereo images. and thus, the distances from the camera to points in
the image were computed. "lhe following table records the computed and measured distances, in
millimeters, for a selected set of points in the image.
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Figure 8. Perpective vie,. of the reconstructed blocks surfaices.

a ,,ble I - Coinputatiton of Distance

Points i Computed i Measured ifenc

Cylinder front 150 1517

~---r'-

Wedge front 1647 1665 _18

llokfront 1743 I1758 15

~I

K : '

Cyigur t lck~ex~ 23 of1 4h eosr bok ufcs

Cylinder to wedge 141 _ 148 fcn7
Cylin radius - left 16 1517 - 1
Cylinder radius - right 18 17 1

Clnerdus- rgt1 17 1

Wedge - depth extent 33 35 2

Block - depth extent 47 s So 3

The first three entries record absolute depth measurements, and it can be seen that the

computed distances to the fronts of the three objects are off by approximatel) 15 mm. out of a
sensing distance of 1500 mm. or roughly 1%. Note that this transformation to absolute distance is
sensitive not only to errors in the computation of stereo correspondence, but also to errors in the

measurement of the camera geometry. Given the coarseness with which the camera parameters
were computed. it is likely that this is the major source of error in the computation of absolute

distance.

The remaining entries of the table record relatve computed distances, both for separations
of the objects. and for the depth extent of the objects. The fourth and fifth entries record the

computed and measured relative separations of the objects. The final four entries record the radius
of the cylinder, as measured to the left and right of the front of the cylinder, and the change
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in depth across the hlock and edgc, lor this p.oitkulaf %ieC inch.'. 0n ,oeiIcc. Ohi CiI In

relah.ic depth [ends to he oi the order of .5-7 mim. out of a botal depth rimlc of 3011 turn. I o

put thli' in ite ColniexI of die stereo ialporithin., %C noLe that for this II aiiI geomctry. an eri ir

in stereo matching of one pixel %kould gic rise to a depth error of 5-110 mm. depending on the
,actual location I the image. Thus. the errors in reltic depth are esscntiall, on the order of a
pixel in disparity.

4.2. kcrial Photographs

The second t.ype of images to %hich Ae ha~e applied the stereo algorithm are acrial
photographs. both of natural terrain and nian-miide strictures. lhc perfonnmncc of the modified

stereo algorithm on all the images is siimmari/ed in the follming table.

lalc II - StCere i nummars

Blocks i UIIC i t.Sill Phoenix Boeing

Size 2Ss x 221 i 320 x 320 512 x 512 i 512 x 512 320 x 320

Disparity Range 56 13 51 41 13

Zero-crossings 11013 16801 32907 311403 106.12

Matched Z-C's 1780 12310 I 16073 23890T 6608

Matching Errors 0 9 _ 286 78 1 6 7
After Consistenc\ 0 0 0 0 33

The roA labelled size indicates the dimensions of the images. The ro%& labelled disparit" range lists
the disparity range of each image pair, in pixels. In the row' labelled zero-crossings, we indicate
the total number of zero-crossing pixels, including horizontal ones. In the row labelled matched
z-c's. the number of such zero-crossings that are assigned a match is indicated. In the row labelled
matching errors, the number of zero-crossings pixels that are assigned an incorrect match are listed.
Note that we distinguish here between matching errors and localization errors. Matching errors are

those that arise when incorrect zero-crossings contours are matched, independent of the accuracy
of the contours themselves. Such errors tend to be relatively large in disparity, Localization errors

arc those that arise due to error in position of the zero-crossing contour itself. Such errors usually
tend to be relatively small. The row labelled after consistenc) lists the number of such matching
errors that remain after the consistency constraint is applied between different resolution disparity

maps.

The images themselves are illustrated in Figures 9-20. For each one, we show the stereo images,
the disparity map obtained by matching the zero-crossings are the finest level of representation.
and a contour map based on this disparity map. The disparity maps are displayed using intensity
to encode height, so that the brighter disparity points are closer. To obtain a contour map
representation of the results, we have applied a surface reconstruction algorithm [Grimson 1982,

1983a. Terzopoulos, 1983, 19841 to the stereo data.

The first pair of images, from the Phoenix area. are illustrated in Figure 9, and were supplied
courtesy of the )efense Mapping Agency. A second stereo pair of natural terrain, from the
Fort Sill. Oklahoma area, are illustrated in Figure 12. and were supplied courtesy of the U.S.

Army Engineering Topographic Laboratory. The next stereo pair, from the University of British
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Figure 9. Natural terrain stereo pair (Ft. SUi)l.

~ It

Figure 10. Disparity map (FL SiJl).
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Figure 11. Contour map (Ft. Sill) based on matching before consistency check.

.,. ++ . ~,.- I +.-

i~ ~ F.:++ +-

Figure 12. Natural terrain stereo pair (Pheonix).

Columbia. and supplied courtcs of UBC arc illustrated in Figure 16. '[he final stereo pair are of
a highway interchange, and wcrc supplied courtesy of ilocing Corporation.

A number of comments are in order concerning the performance of the algorithm, as indicated
above. Wc note that in the case of the blocks scene. the percentage of matched /cro-crossing to total
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Figure 13. Disparity map (Pheonix).

0e

bC

Figure 14. Contour map (Pheonix) based on matching before consistency check.

zero-crossing is small, on the order of .17 percent. Note, howetver, that many of thc zero-crossings
are shallow, unstable zero-crossing. corrcsponding to small fluctuations in the photometric process.
as illustrated by Figure 3. If we consider only zero-crossing points on the blocks themrsclhes, then
the number of eligible zcro-crossing points reduces to 2703, of which 1780 are assigned a match.
Note further that this number of 1780 does not include any strictly horizontal 7cro-crossing points.
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Figure 15. Contour mnap (Pheoni\) based on mai hing after consistency check

Figure 16 Natural terrain slereo pair (UBC).

nor does it include crm small icro-crossing contours, which faill below the matching thresholds.

and are hence unmatchable.

The iFort Sill imaC does pruide some difficult for the algorithm. particularl because the

photometric propcrtics of the imiges cause a certain amount of fluctuation in the positions of the
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Figure 17. Disparity map (UBC).

'.4

(ONTU rcs: 1 rnsrt:tI1~

Figure 18. Contour map (U BC) based on matching before consistency check.

zero-crossing contours. As a consequence of the design of the matching procedure, which favors
no match to possible incorrcct matches, a large number of the potential zero-crossing points are
not matched. Note, however. that thc percentage of matched zero-crossings to total zcro-crossings
is somewhat mislcading. since a large number of the total arc nlot, in fact, matchablc. In this
case, at least ten percent of thc zcro-crossings in thc left image arc not present in the right sincc
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Figure 19. Natural terrain stereo pair (Boeing).

Figure 20. Disparity map (Boeing).
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(,rinipAon si.,.

the'.li Ire b'.nid the edee of 111c rirra1Ce. \k e 1ls0 r101C 01ir1 thL' CL0ililii 11111 Jc . .hII I ILW1h

11 is based on 01-.' le:NlisII 01 thre 11urtching dlgOr thin hbefore die 0IrIsisierK% LlIL:Lk i,, ippL'd As

a coniscquenic. ide etreet of the -single inicorrcth\l inartchea coritouiIll 111 the I tape 01f qtdant

is clearly %. ihilc I,, i sudden dip in die contouir inap. This clean.denirsrae the need f Ir .

conSNICTnc'. ch'k to icitrirse oS oimin~tching errors that Stir.is e\ the nIMtL hin1g PfkkCss ltsclf

Inl die Phoenix. inllaes. the Contour map of Figurc 14 is also gencrated frontma yiiihig datai

w ithout a ConISI1l1C' Check. In figure11 15. %AC. Ipply thc surface reconsrFUnc01 tw .lg 1011 ithri) the

data after appl\ing the consistency check. We also ha' e relaxed thc tightness %iih A hw -h the

reconstruc tiorn i,, hirced it, piss ti iugh the ste reo darta. It can bie sccen thait the1 nIt i 1lg con1touir

map has remnosed the oh'. 0is rir1iteh ing defects arid has a srniothcr sert ocoio'IIu rs. lb is Nmooither

surface recotiStitrE0l IN Oncean ChOf renms g possible local i/irtiori errors inl the nmiehed data.
as %4ell as niaching errors that stir'.ise the process.

W'hile the Fort Sill image presents a great deal of diffict.m) to the fl 'irithi diic to large

flUCtuion1111s in !1ic positions and shapes of thc /ero-crossing ccntliurs. the lBocing Imnage presents a

different type of difficult\. Here, die large number of extended, parallel image contours presents

a large set (if potential ambiguities. In general. ho\&eser, the algorithrrn is able to solve this

problem, by relkmg on irifiirmationi from coarser cliannnels to disanib iru ate finer oines. Because

the inter-polation process is Only applicable across smooth surfaces, arid the Boeing image contains

a large number Of surface discontinuities, %c have omitted the cointour map for this image.

It is important to stress with all (if the contour maps. aiad especially for the UBC images.

that these illustrations are intended as a graphical means of displaying the performance of the

stereo algorithm but not as a precise reconstruction of the underlying terrain. In particular, since

one of the parameters of the surface reconstruction algorithm is the degree of smoothing applied

to the reconstructed surface, the resultig contour maps may exhibit more smoothing than is
warranted, due to the choice of this parameter. Nonetheless the qualitative performance of the

stereo algorithim is still evident by the arrangement and spacing of the contours. In the case of the

stereo pairs with buildings and Other artifacts present, the application of the surface reconstruction

algorithm directly to the results of the stereo algorithm is actually incorrect, since it attempts to fit

a single surfi.ce over what are in fact several distinct surfaces. To be completely correct, the stereo

depth data should be segmented into coherent regions, and then interpolated. Since this was not

done, the resulting surface interpolation tends incorrectly to smooth ovcr the discontinuities in

depth. Nonetheless, the contour maps illustrated still demonstrate the basic performance of the

stereo algorithm and the tightly clustered isometric contours help to indicate the separations of

the different buildings from the ground.

5. Discussion

The modified Marr-Poggio-Grimson algoithm presented here was originally implemented in

LISP on an MIlT Lisp Machine, and then recoded in Lisp Machine microcode, for more efficient

performance. '[he con'olutions of the images were performed using a special purpose convolution

34



(10e iic Ni'shlimi anid I arson. 1% I]. While fihe time icqired lo protcs. 11) iage 1' pi\lentn

Onl largev nimmhei of tltciors irli lig theC Woi1111xi6 of' tile illlag. it is possible Ito 9i1\ estimlates

onl die pellOimalct: of' this Iimplemrentation of' thle 119olrithim. L'sing a 32(1 A :12014 J'e s a1 hasis.

%kc hase~ ohlser~ ed thle 1fbl1o'Aing liming charatcteristics,. l- ach con'olution of al n iage. inCluding
timei 1eqiied to iiitedrla.c the con llirton01 de ice A ith tile 1.11 isp ahineC. usally requ11C i le d nth

orde r Of 5) sc nds. Vawh cOMPI puationl Of a /c ii -cri ssi ngs representation ty pically required onl thle

order of *I10 seconds. [he amnounit of' timie required to mnatch the /ero-crossi ng representations \& as

hiplhl\ dependent onl thle number of' fixat ion positions required (and thus Onl thle totalf disparit\,

range of the imiage). Maitching at each Such fiXation1 position 1.1u4,1l1 requii ed onl the order of

5201 second,,. depending onl the structure of the /cro-crossings conitir. Vinally . corihinuing all

the sli1cS Of the disparity map into a single consistent representation ty picall required on the

order of 30 60) seconds. I hus. fi r example. a single fine resolution channel prkko',nviri of the

L BC images, nonnall\, took under a minutes in total, and tile total time for running thrtee ditTeront

resolution channels A as on the order of 10 minutes.
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